在分析函数调用时,必须要对CPU的寄存器熟悉。在所有的体系架构中,每个寄存器都有建议的使用方法,编译器在对代码进行编译时,也通常按照体系架构建议的寄存器的使用方法进行编译。在x86_64
体系架构中,总共有16个64位通用寄存器,各寄存器及用途如下所示:

对上图中的寄存器做简单说明:
%rax :通常存储函数调用的返回结果,也被用在idiv
(除法)和imul
(乘法)命令中。
%rsp :堆栈指针寄存器,指向栈顶位置。pop操作通过增大rsp的值实现出栈,push操作通过减小rsp的值实现入栈。
%rbp :栈帧指针,标识当前栈帧的起始位置。
%rdi, %rsi, %rdx, %rcx,%r8, %r9 :六个寄存器,当参数少于7个时, 参数从左到右放入寄存器: rdi, rsi, rdx, rcx, r8, r9;当参数为7个以上时,前 6 个与前面一样, 但后面的依次从 “右向左” 放入栈中,即和32位汇编一样。
(备注:用栈在进行参数传递时,即便参数<8字节,也要对齐放在8字节的空间中)
函数执行前后必须保持原始的寄存器有3个:是rbx、rbp、rsp。rx寄存器中,最后4个必须保持原值:r12、r13、r14、r15。保持原值的意义是为了让当前函数有可信任的寄存器,减小在函数调用过程中的保存&恢复操作。除了rbp、rsp用于特定用途外,其余5个寄存器可随意使用。
Caller Save
和 Callee Save
寄存器 : 寄存器的值是由”调用者保存“ 还是由 ”被调用者保存“。当进行函数调用时,子函数通常也会使用通用寄存器,但这些寄存器中可能保存着父函数(调用者)的值。如果是Caller Save
寄存器,在进行子函数调用之前,需要由调用者提前保存寄存器中的值(入栈),然后在子函数中可以向这些寄存器中写入任何数据;在完成调用后,恢复寄存器原来的值(出栈)。如果是Callee Save
寄存器,父函数在进行子函数调用前不会保存寄存器中的值,在调用子函数后,子函数会首先保存寄存器中的值(入栈);子函数完成功能后,恢复寄存器中的值,然后再返回到父函数,结束调用。
在对子函数进行调用时,栈帧情况如下:

(注意此处栈帧增长方向从上到下)
调用者栈帧中,保存了被调用函数的参数以及调用者的返回地址,其流程大致如下:
父函数将调用参数从右到左依次压栈->返回地址入栈->跳转到子函数起始地址->子函数将父函数栈帧起始地址(%rbp)压栈->将%rbp 的值设置为当前 %rsp 的值,开辟栈帧空间
函数调用时的汇编指令如下:
以上过程由编译器自动完成。需要注意的是,父函数中进行参数压栈时,顺序为从右到左,但并不是固定,要看编译器的具体实现(gcc使用的是从右到左)。
函数返回时,我们需要的数据是函数的返回值(%rax),然后将栈结构恢复到函数调用之前的状态,最后跳转到父函数的返回地址继续执行。需要执行以下两条指令:
为了便于栈帧恢复,x86_64 架构中提供了 leave 指令来实现上述两条命令的功能。执行 leave 后,前面图中函数调用的栈帧结构如下:

调用 leave 后,%rsp 指向返回地址;ret 指令,从栈顶弹出数据,并跳转到此数据指向的地址处。在leave 执行后,%rsp 指向返回地址,因而 ret 的作用就是把 %rsp 上移一个位置,并跳转到返回地址执行。
所以,leave 指令用于恢复父函数的栈帧,ret 用于跳转到返回地址处,leave 和ret 配合共同完成了子函数的返回。当执行完成 ret 后,%rsp 指向的是父栈帧的结尾处,父栈帧尾部存储的调用参数由编译器自动释放。
程序源代码如下:
上面程序生成的和子函数调用相关的汇编程序如下:
首先看 main 函数的前三条汇编语句:
保存父函数栈帧,之后创建main 函数的栈帧并且分配了48 Byte 的空间。执行完成后,main 函数的栈帧如下图所示:

继续往后走,可以看到对k=i+j的处理过程:
需要注意的是,传统的栈空间的利用操作是使用一个栈空间,进行一次push操作。但是我们的代码里没有这样进行,而是利用之前分配的48字节的空间,以空间的缩减进行分配,本质上是和push操作是一样的。最终的计算结果保存在%eax中。
后续进行add函数调用,add的返回值将会放在%eax中,当前%eax中保存的是k值。所以需要首先保存%eax中的值,然后在add函数中进行调用,最后再恢复%eax的值。%eax 是 Caller Save的,所以由父函数main函数来进行保存(movl %eax,-12(%rbp)
)。
再往后,开始参数入栈,前6个参数依次保存到对应的寄存器中,最后两个参数从右到左压入栈中。
进入 add 函数后之后的操作如下:
首先创建新栈帧,然后进行参数入栈。
在参数入栈时,我们看到并未使用 push 之类的指令,也没有调整 %esp 指针的值,而是使用了 -N(%rbp) 这样的指令来使用新的栈空间。这种使用”基地址+偏移量“ 来使用栈的方式和直接使用 %esp 指向栈顶的方式其实是一样的。
当add函数返回后,返回结果存储在%eax 中,%rbp 和 %rsp 调整为指向 main 的栈帧,之后执行main 函数中的如下指令:
add 函数返回时,把返回值保存到了 %eax 中,使用完返回值后,会恢复 caller save 寄存器 %eax的值,这时main 栈帧恢复到调用add函数之前的状态。
需要注意的是,在调用 add 之前,main 中执行了一条 subq 48, %rsp
的指令,这主要是因为main函数并未再调用其他函数,结尾处的leave、ret两条指令直接覆盖了%rsp的值从而回到了父栈帧中。如果先调整 main 栈帧的 %rsp 值,之后 leave 再覆盖 %rsp 的值,相当于调整是多余的。因而省略main 中 add返回之后的 %rsp 的调整,而使用 leave 直接覆盖%rsp更为合理。
之前对这一块不是很懂,看了大佬的文章后就明白了~
[培训]科锐逆向工程师培训第53期2025年7月8日开班!